27 research outputs found

    An Approach to Automatically Constructing Domain Ontology

    Get PDF
    PACLIC 20 / Wuhan, China / 1-3 November, 200

    The Association of Depressive Symptoms with Inflammatory Factors and Adipokines in Middle-Aged and Older Chinese

    Get PDF
    Studies in Western populations find that depression is associated with inflammation and obesity. The present study aimed to evaluate the relation of depressive symptoms with inflammatory factors and adipose-derived adipokines in middle-aged and older Chinese.Data were from 3289 community residents aged 50-70 from Beijing and Shanghai who participated in the Nutrition and Health of Aging Population in China project. Depressive symptoms were defined as a Center for Epidemiological Studies of Depression Scale (CES-D) score of 16 or higher. Plasma concentrations of C-reactive protein (CRP), interleukin-6 (IL-6), adiponectin, resistin, plasminogen activator inhibitor-1 (PAI-1) and retinol binding protein 4 (RBP4) were measured. Of the 3289 participants, 312 (9.5%) suffered from current depressive symptoms. IL-6 level was higher in participants with depressive symptoms compared to their counterparts in the crude analyses (1.17 vs. 1.05 pg/mL, p = 0.023) and this association lost statistical significance after multiple adjustments (1.13 vs. 1.10 pg/mL, p = 0.520). Depressive symptoms were not associated with increased mean levels of any other inflammatory factors or adipokines in the unadjusted or adjusted analyses.We found no evidence that depressive symptoms were associated with inflammatory factors and adipokines in the middle-aged and older Chinese populations. Prospective studies and studies in clinically diagnosed patients are needed to confirm our results and clarify the relation of depression with inflammatory factors and adipokines

    Prediction of conformational B-cell epitopes from 3D structures by random forests with a distance-based feature

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Antigen-antibody interactions are key events in immune system, which provide important clues to the immune processes and responses. In Antigen-antibody interactions, the specific sites on the antigens that are directly bound by the B-cell produced antibodies are well known as B-cell epitopes. The identification of epitopes is a hot topic in bioinformatics because of their potential use in the epitope-based drug design. Although most B-cell epitopes are discontinuous (or conformational), insufficient effort has been put into the conformational epitope prediction, and the performance of existing methods is far from satisfaction.</p> <p>Results</p> <p>In order to develop the high-accuracy model, we focus on some possible aspects concerning the prediction performance, including the impact of interior residues, different contributions of adjacent residues, and the imbalanced data which contain much more non-epitope residues than epitope residues. In order to address above issues, we take following strategies. Firstly, a concept of 'thick surface patch' instead of 'surface patch' is introduced to describe the local spatial context of each surface residue, which considers the impact of interior residue. The comparison between the thick surface patch and the surface patch shows that interior residues contribute to the recognition of epitopes. Secondly, statistical significance of the distance distribution difference between non-epitope patches and epitope patches is observed, thus an adjacent residue distance feature is presented, which reflects the unequal contributions of adjacent residues to the location of binding sites. Thirdly, a bootstrapping and voting procedure is adopted to deal with the imbalanced dataset. Based on the above ideas, we propose a new method to identify the B-cell conformational epitopes from 3D structures by combining conventional features and the proposed feature, and the random forest (RF) algorithm is used as the classification engine. The experiments show that our method can predict conformational B-cell epitopes with high accuracy. Evaluated by leave-one-out cross validation (LOOCV), our method achieves the mean AUC value of 0.633 for the benchmark bound dataset, and the mean AUC value of 0.654 for the benchmark unbound dataset. When compared with the state-of-the-art prediction models in the independent test, our method demonstrates comparable or better performance.</p> <p>Conclusions</p> <p>Our method is demonstrated to be effective for the prediction of conformational epitopes. Based on the study, we develop a tool to predict the conformational epitopes from 3D structures, available at <url>http://code.google.com/p/my-project-bpredictor/downloads/list</url>.</p

    Characterizing dynamic regulatory programs in mouse lung development and their potential association with tumourigenesis via miRNA-TF-mRNA circuits

    No full text
    BACKGROUND: In dynamic biological processes, genes, transcription factors(TF) and microRNAs(miRNAs) play vital regulation roles. Many researchers have focused on the transcription factors or miRNAs in transcriptional or post transcriptional stage, respectively. However, the transcriptional regulation and post transcriptional regulation is not isolated in the whole dynamic biological processes, there are few reserchers who have tried to consider the network composed by genes, miRNAs and TFs in this dynamic biological processes, especially in the mouse lung development. Moreover, it is widely acknowledged that cancer is a kind of developmental disorders, and some of pathways involved in tissue development might be also implicated in causing cancer. Although it has been found that many genes differentially expressed during mouse lung development are also differentially expressed in lung cancer, very little work has been reported to elucidate the combinational regulatory programs of such kind of associations. RESULTS: In order to investigate the association of transcriptional and post-transcriptional regulating activities in the mouse lung development, we define the significant triple relations among miRNAs, TFs and mRNAs as circuits. From the lung development time course data GSE21053, we mine 142610 circuit candidates including 96 TFs, 129 miRNAs and 13403 genes. After removing genes with little variation along different time points, we finally find 64760 circuit candidates, containing 8299 genes, 50 TFs, and 118 miRNAs in total. Further analysis on the circuits shows that the circuits vary in different stages of the lung development and play different roles. By investigating the circuits in the context of lung specific genes, we identify out the regulatory combinations for lung specific genes, as well as for those lung non-specific genes. Moreover, we show that the lung non-specific genes involved circuits are functionally related to the lung development. Noticing that some tissue developmental systems may be involved in tumourigenesis, we also check the cancer genes involved circuits, trying to find out their regulatory program, which would be useful for the research of lung cancer. CONCLUSIONS: The relevant transcriptional or post-transcriptional factors and their roles involved in the mouse lung development are both changed greatly in different stages. By investigating the cancer genes involved circuits, we can find miRNAs/TFs playing important roles in tumour progression. Therefore, the miRNA-TF-mRNA circuits can be used in wide translational biomedicine studies, and can provide potential drug targets towards the treatment of lung cancer

    Drug Repositioning Based on the Enhanced Message Passing and Hypergraph Convolutional Networks

    No full text
    Drug repositioning, an important method of drug development, is utilized to discover investigational drugs beyond the originally approved indications, expand the application scope of drugs, and reduce the cost of drug development. With the emergence of increasingly drug-disease-related biological networks, the challenge still remains to effectively fuse biological entity data and accurately achieve drug-disease repositioning. This paper proposes a new drug repositioning method named EMPHCN based on enhanced message passing and hypergraph convolutional networks (HGCN). It firstly constructs the homogeneous multi-view information with multiple drug similarity features and then extracts the intra-domain embedding of drugs through the combination of HGCN and channel attention mechanism. Secondly, inter-domain information of known drug-disease associations is extracted by graph convolutional networks combining node and edge embedding (NEEGCN), and a heterogeneous network composed of drugs, proteins and diseases is built as an important auxiliary to enhance the inter-domain message passing of drugs and diseases. Besides, the intra-domain embedding of diseases is also extracted through HGCN. Ultimately, intra-domain and inter-domain embeddings of drugs and diseases are integrated as the final embedding for calculating the drug-disease correlation matrix. Through 10-fold cross-validation on some benchmark datasets, we find that the AUPR of EMPHCN reaches 0.593 (T1) and 0.526 (T2), respectively, and the AUC achieves 0.887 (T1) and 0.961 (T2) respectively, which shows that EMPHCN has an advantage over other state-of-the-art prediction methods. Concerning the new disease association prediction, the AUC of EMPHCN through the five-fold cross-validation reaches 0.806 (T1) and 0.845 (T2), which are 4.3% (T1) and 4.0% (T2) higher than the second best existing methods, respectively. In the case study, EMPHCN also achieves satisfactory results in real drug repositioning for breast carcinoma and Parkinson’s disease

    Identification of Specific Pathogen-Infected sRNA-Mediated Interactions between Turnip Yellows Virus and <i>Arabidopsis thaliana</i>

    No full text
    Virus infestation can seriously harm the host plant’s growth and development. Turnip yellows virus (TuYV) infestation of host plants can cause symptoms, such as yellowing and curling of leaves and root chlorosis. However, the regulatory mechanisms by which TuYV affects host growth and development are unclear. Hence, it is essential to mine small RNA (sRNA) and explore the regulation of sRNAs on plant hosts for disease control. In this study, we analyzed high-throughput data before and after TuYV infestation in Arabidopsis using combined genetics, statistics, and machine learning to identify 108 specifically expressed and critical functional sRNAs after TuYV infection. First, comparing the expression levels of sRNAs before and after infestation, 508 specific sRNAs were significantly up-regulated in Arabidopsis after infestation. In addition, the results show that AI models, including SVM, RF, XGBoost, and CNN using two-dimensional convolution, have robust classification features at the sequence level, with a prediction accuracy of about 96.8%. A comparison of specific sRNAs with genome sequences revealed that 247 matched precisely with the TuYV genome sequence but not with the Arabidopsis genome, suggesting that TuYV viruses may be their source. The 247 sRNAs predicted target genes and enrichment analysis, which identified 206 Arabidopsis genes involved in nine biological processes and three KEGG pathways associated with plant growth and viral stress tolerance, corresponding to 108 sRNAs. These findings provide a reference for studying sRNA-mediated interactions in pathogen infection and are essential for establishing a vital resource of regulation network for the virus infecting plants and deepening the understanding of TuYV virus infection patterns. However, further validation of these sRNAs is needed to gain a new understanding

    sRNATargetDigger: A bioinformatics software for bidirectional identification of sRNA-target pairs with co-regulatory sRNAs information.

    No full text
    Identification of the target genes of microRNAs (miRNAs), trans-acting small interfering RNAs (ta-siRNAs), and small interfering RNAs (siRNAs) is an important step for understanding their regulatory roles in plants. In recent years, many bioinformatics software packages based on small RNA (sRNA) high-throughput sequencing (HTS) and degradome sequencing data analysis have provided strong technical support for large-scale mining of sRNA-target pairs. However, sRNA-target regulation is achieved using a complex network of interactions since one transcript might be co-regulated by multiple sRNAs and one sRNA may also affect multiple targets. Currently used mining software can realize the mining of multiple unknown targets using known sRNA, but it cannot rule out the possibility of co-regulation of the same target by other unknown sRNAs. Hence, the obtained regulatory network may be incomplete. We have developed a new mining software, sRNATargetDigger, that includes two function modules, "Forward Digger" and "Reverse Digger", which can identify regulatory sRNA-target pairs bidirectionally. Moreover, it has the ability to identify unknown sRNAs co-regulating the same target, in order to obtain a more authentic and reliable sRNA-target regulatory network. Upon re-examination of the published sRNA-target pairs in Arabidopsis thaliana, sRNATargetDigger found 170 novel co-regulatory sRNA-target pairs. This software can be downloaded from http://www.bioinfolab.cn/sRNATD.html
    corecore